Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1139725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124753

RESUMO

Introduction: Flaxseed oil (FO) and vitamin E (VE) both have antioxidant effects on sperm. The present study investigated the effects of dietary supplementation with FO and/or VE on semen quality. Methods: 16 fertile Simmental bulls were selected and randomly divided into 4 groups (n = 4): the control group (control diet), FO group (control diet containing 24 g/kg FO), VE group (control diet containing 150 mg/kg VE) and FOVE group (control diet containing 150 mg/kg VE and 24 g/kg FO), and the trial lasted 10 weeks. Results: The results showed that the addition of FO independently can increase sperm motion parameters, the levels of catalase (CAT), glutathione peroxidase (GSH-Px), testosterone (T) and estradiol (E2), while reduce oxidative stress in seminal plasma (P < 0.05). Supplement of VE independently can increased the motility, motility parameters, CAT and superoxide dismutase (SOD) levels, and reduce oxidative stress in seminal plasma (P < 0.05). There was an interaction effect of FO × VE on motility and reactive oxygen species (ROS), while GSH-Px and ROS were affected by week × VE 2-way interaction, levels of T and E2 were also affected by the dietary FO × week interaction (P < 0.05). The triple interaction effects of FO, VE and week were significant for malondialdehyde (MDA) (P < 0.05). Compared with the control group, sperm from the FOVE group had a significantly higher in vitro fertilization (IVF) rate, and subsequent embryos had increased developmental ability with reduced ROS levels at the eight-cell stage, then increased adenosine triphosphate (ATP) content and gene expression levels of CAT, CDX2, Nanog, and SOD at the blastocyst stage (P < 0.05). Metabolomic and transcriptomic results indicated that dietary supplementation of FO and VE increased the expression of the metabolite aconitic acid, as well as the expression of ABAT and AHDHA genes. Conclusion: With in-silico analysis, it can be concluded that the effects of dietary FO and VE on improving semen quality and embryo development may be related to increased aconitic acid via the ABAT and AHDHA genes involved in the propionic acid metabolism pathway.


Assuntos
Gorduras Insaturadas na Dieta , Linho , Masculino , Animais , Bovinos , Análise do Sêmen , Vitamina E/farmacologia , Óleo de Semente do Linho/farmacologia , Espécies Reativas de Oxigênio , Ácido Aconítico , Sementes/metabolismo , Dieta , Superóxido Dismutase/metabolismo
2.
Life Sci ; 309: 121010, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181864

RESUMO

AIMS: Short-chain fatty acids (SCFAs) are produced by gut microbiota from dietary fiber. Since absorbed SCFAs could be introduced into the tricarboxylic acid (TCA) cycle in host cells, the relationships between SCFAs and TCA cycle intermediates might influence to energy metabolism in the human body. For this reason, information on profile changes between SCFAs and TCA cycle intermediates could help unveil pathological mechanisms of gastric cancer. MAIN METHODS: A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed to simultaneously determine SCFAs and TCA cycle intermediates in human plasma from patients with chronic superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. We applied a tetra-alkyl ammonium pairing method to prevent loss of volatile SCFAs and base decarboxylation of TCA cycle intermediates during sample preparation. To assess gastric diseases, metabolic alterations of SCFAs and TCA cycle intermediates in human plasma with gastric disorders were analyzed by their plasma levels. KEY FINDINGS: Significantly different metabolic alterations based on the plasma levels of SCFAs and TCA cycle intermediates were investigated in cancer metabolic pathways. Not only propionate and butyrate, mainly produced by gut microbiota, were significantly decreased, but also cis-aconitate, α-ketoglutarate, and fumarate were significantly increased in plasma with IM or gastric cancer, compared to CSG. Further, based on ratios of product to precursor, three metabolic pathways (succinate/propionate, succinate/α-ketoglutarate, and cis-aconitate/citrate) were supposed to be distorted between gastric diseases. SIGNIFICANCE: In conclusion, propionate, cis-aconitate, α-ketoglutarate, and fumarate could be used to assess the progression of gastric cancer.


Assuntos
Compostos de Amônio , Gastrite Atrófica , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Espectrometria de Massas em Tandem , Propionatos , Ácidos Cetoglutáricos , Ácido Aconítico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos Voláteis , Fibras na Dieta , Ácido Succínico , Butiratos , Fumaratos , Citratos
3.
J Phys Chem A ; 126(40): 7291-7308, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36170058

RESUMO

A model is developed to describe trace gas uptake and reaction with applications to aerosols and microdroplets. Gas uptake by the liquid is formulated as a coupled equilibria that links gas, surface, and bulk regions of the droplet or solution. Previously, this framework was used in explicit stochastic reaction-diffusion simulations to predict the reactive uptake kinetics of ozone with droplets containing aqueous aconitic acid, maleic acid, and sodium nitrite. With the use of prior data and simulation results, a new equation for the uptake coefficient is derived, which accounts for both surface and bulk reactions. Lambert W functions are used to obtain closed form solutions to the integrated rate laws for the multiphase kinetics; similar to previous expressions that describe Michaelis-Menten enzyme kinetics. Together these equations couple interface and bulk processes over a wide range of conditions and do not require many of the limiting assumptions needed to apply resistor model formulations to explain trace gas uptake and reaction.


Assuntos
Ozônio , Nitrito de Sódio , Ácido Aconítico , Aerossóis , Cinética
4.
J Biol Chem ; 298(9): 102301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931118

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent ß-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent ß-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent ß-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Acil Coenzima A , Poluentes Ambientais , Fígado Gorduroso , Fígado , Dibenzodioxinas Policloradas , Deficiência de Vitamina B 12 , Vitamina B 12 , Ácido Aconítico/metabolismo , Acil Coenzima A/metabolismo , Animais , Cobalto/metabolismo , Cisteína/metabolismo , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/complicações
5.
Planta Med ; 88(13): 1123-1131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34763354

RESUMO

cis-Aconitic acid is a constituent from the leaves of Echinodorus grandiflorus, a medicinal plant traditionally used in Brazil to treat inflammatory conditions, including arthritic diseases. The present study aimed to investigate the anti-arthritic effect of cis-aconitic acid in murine models of antigen-induced arthritis and monosodium urate-induced gout. The possible underlying mechanisms of action was evaluated in THP-1 macrophages. Oral treatment with cis-aconitic acid (10, 30, and 90 mg/kg) reduced leukocyte accumulation in the joint cavity and C-X-C motif chemokine ligand 1 and IL-1ß levels in periarticular tissue. cis-Aconitic acid treatment reduced joint inflammation in tissue sections of antigen-induced arthritis mice and these effects were associated with decreased mechanical hypernociception. Administration of cis-aconitic acid (30 mg/kg p. o.) also reduced leukocyte accumulation in the joint cavity after the injection of monosodium urate crystals. cis-Aconitic acid reduced in vitro the release of TNF-α and phosphorylation of IκBα in lipopolysaccharide-stimulated THP-1 macrophages, suggesting that inhibition of nuclear factor kappa B activation was an underlying mechanism of cis-aconitic acid-induced anti-inflammatory effects. In conclusion, cis-aconitic acid has significant anti-inflammatory effects in antigen-induced arthritis and monosodium urate-induced arthritis in mice, suggesting its potential for the treatment of inflammatory diseases of the joint in humans. Additionally, our findings suggest that this compound may contribute to the anti-inflammatory effect previously reported for E. grandiflorus extracts.


Assuntos
Alismataceae , Gota , Humanos , Camundongos , Animais , Ácido Aconítico/farmacologia , Inibidor de NF-kappaB alfa , Ácido Úrico , Lipopolissacarídeos , NF-kappa B , Fator de Necrose Tumoral alfa , Ligantes , Alismataceae/química , Gota/induzido quimicamente , Gota/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quimiocinas , Inflamação
6.
Metabolism ; 125: 154915, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678258

RESUMO

BACKGROUND: Tricarboxylic acid (TCA) cycle deregulation may predispose to cardiovascular diseases, but the role of TCA cycle-related metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unexplored. This study sought to investigate the association of TCA cycle-related metabolites with risk of AF and HF. METHODS: We used two nested case-control studies within the PREDIMED study. During a mean follow-up for about 10 years, 512 AF and 334 HF incident cases matched by age (±5 years), sex and recruitment center to 616 controls and 433 controls, respectively, were included in this study. Baseline plasma levels of citrate, aconitate, isocitrate, succinate, malate and d/l-2-hydroxyglutarate were measured with liquid chromatography-tandem mass spectrometry. Multivariable conditional logistic regression models were fitted to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for metabolites and the risk of AF or HF. Potential confounders included smoking, family history of premature coronary heart disease, physical activity, alcohol intake, body mass index, intervention groups, dyslipidemia, hypertension, type 2 diabetes and medication use. RESULTS: Comparing extreme quartiles of metabolites, elevated levels of succinate, malate, citrate and d/l-2-hydroxyglutarate were associated with a higher risk of AF [ORQ4 vs. Q1 (95% CI): 1.80 (1.21-2.67), 2.13 (1.45-3.13), 1.87 (1.25-2.81) and 1.95 (1.31-2.90), respectively]. One SD increase in aconitate was directly associated with AF risk [OR (95% CI): 1.16 (1.01-1.34)]. The corresponding ORs (95% CI) for HF comparing extreme quartiles of malate, aconitate, isocitrate and d/l-2-hydroxyglutarate were 2.15 (1.29-3.56), 2.16 (1.25-3.72), 2.63 (1.56-4.44) and 1.82 (1.10-3.04), respectively. These associations were confirmed in an internal validation, except for aconitate and AF. CONCLUSION: These findings underscore the potential role of the TCA cycle in the pathogenesis of cardiac outcomes.


Assuntos
Fibrilação Atrial/epidemiologia , Ciclo do Ácido Cítrico/fisiologia , Insuficiência Cardíaca/epidemiologia , Ácido Aconítico/sangue , Idoso , Fibrilação Atrial/sangue , Estudos de Casos e Controles , Ácido Cítrico/sangue , Feminino , Glutaratos/sangue , Insuficiência Cardíaca/sangue , Humanos , Incidência , Isocitratos/sangue , Malatos/sangue , Masculino , Pessoa de Meia-Idade , Risco , Ácido Succínico/sangue
7.
Sci Rep ; 10(1): 11305, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647315

RESUMO

Itaconate, which is formed by decarboxylation of cis-aconitate-an intermediate metabolite in the tricarboxylic acid cycle-has been used as a building block in polymer synthesis and is an important chemical in several biomedical and industrial applications. Itaconate is an immunometabolite with antibacterial, antiviral, immunoregulatory, and tumor-promoting activities. Recent focus has been on the role of itaconate in the field of immunology, with immune-responsive gene 1 (IRG1) being identified as the cis-aconitate decarboxylase responsible for itaconate production. We solved the structure of IRG1 from Bacillus subtilis (bsIRG1) and showed that IRG1 adopts either a closed or an open conformation; bsIRG1 was in the open form. A1 and A2 loops around the active site are flexible and can control the formation of the open and closed forms of IRG1. An in silico docking simulation showed that only the open form of IRG1 can accommodate the substrate. The most energetically favorable position of cis-aconitate in the active site of bsIRG1 involved the localization of C2 and C5 of cis-aconitate into the H102 region and H151 region of bsIRG1, respectively. Based on the structural study of bsIRG1, compared with IDS epimerase, and in silico docking simulation, we proposed two tentative enzymatic reaction mechanisms of IRG1, a two-base model and a one-base model.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Carboxiliases/química , Ácido Aconítico/metabolismo , Domínio Catalítico
8.
Artigo em Inglês | MEDLINE | ID: mdl-32361631

RESUMO

Accumulation of Immune Responsive Gene 1(IRG1) in macrophage induced by lipopolysaccharide (LPS) and interferon gamma (IFN-γ) leads to production of itaconate by decarboxylation of cis-aconitate. The biology associated with IRG1 and itaconate is not fully understood. A rapid and sensitive method for measurement of itaconate will benefit the study of IRG1 biology. Multiple HPLC and derivatization methods were tested. An ion pairing LC-MS/MS method using tributylamine/formic acid as ion pairing agents and a HypercarbTM guard column we proposed demonstrated better peak shape and better sensitivity for itaconate. The current protocol allows baseline separation of itaconate, citraconate, and cis-aconitate without derivatization and direct analysis of analytes in 80% methanol/water solution to avoid the dry-down step. It provides the limit of quantitation (LOQ) of 30 pg itaconate on column with a 4.5-minute run time. This method is validated for measurement of itaconate and cis-aconitate in RAW264.7 cell extract and cell media in a 96-well plate format. We applied this method to successfully measure the increase of itaconate and the decrease of cis-aconitate in RAW cell extract and cell media after LPS/IFN-γ treatment.


Assuntos
Ácido Aconítico/análise , Extratos Celulares/análise , Succinatos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Técnicas Biossensoriais , Butilaminas/química , Cromatografia Líquida de Alta Pressão , Formiatos/química , Hidroxilaminas/química , Interferon gama/química , Limite de Detecção , Lipopolissacarídeos/química , Macrófagos/química , Camundongos , Células RAW 264.7 , Sensibilidade e Especificidade
9.
J Mater Chem B ; 7(32): 4963-4972, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31411618

RESUMO

The construction of antibacterial and antitumor coatings could offer effective routes to improve the therapeutic effects of non-vascular stents for unresectable obstructions caused by malignant tumours. Herein, polyelectrolyte multilayers have been explored as bactericidal coatings with controlled antitumor drug release. To solve the challenges of loading and controlled release of small-molecule chemotherapeutic drugs in polyelectrolyte multilayers, the antitumor drug doxorubicin (DOX) was chemically conjugated onto polyethylenimine via cis aconitic anhydride (pH-sensitive linker), thus obtaining the polycation prodrug PEI-CA-DOX. Alginate sodium was oxidized (O-Alg) and mixed with DOX to prepare the O-Alg-DOX complex as a polyanion. QCM-D and contact angle tests were used to monitor and verify the progressive build-up of the PEI-CA-DOX/O-Alg-DOX multilayer films, which show a linear growth. The in vitro antibacterial tests indicated that the PEI-CA-DOX-terminated PEI-CA-DOX/O-Alg-DOX multilayers could kill the bacteria effectively. As-such multilayers also presented a long-term sustained DOX release behaviour in PBS due to the combination of slow release in PEI-CA-DOX and fast release in the O-Alg-DOX complex. The as-designed PEI-CA-DOX/O-Alg-DOX multilayers with combined antibacterial and antitumor properties may have great potential for applications in non-vascular stent coatings for palliative treatment of obstruction caused by malignant tumours.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Stents , Ácido Aconítico/análogos & derivados , Ácido Aconítico/química , Alginatos/química , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Polietilenoimina/química
10.
J Agric Food Chem ; 67(32): 8773-8782, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31283205

RESUMO

Conquering rapid postripeness and deterioration of Agaricus bisporus is quite challenging. We previously observed that methyl jasmonate (MeJA) pretreatment postponed the deterioration of A. bisporus, but the mechanism is unknown. Here, a nontargeted metabolomics analysis by ultrahigh-pressure liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) revealed that MeJA increased the synthesis of malate by inhibiting the decomposition of fumarate and cis-aconitate. MeJA maintained energy supply by enhancing ATP content and energy charge level and improving hexokinase and glucose-6-phosphate dehydrogenase activities as well. These results promoted ATP supply by maintaining glycolysis, the TCA cycle, and the pentose phosphate pathway. In addition, we revealed that the delayed deterioration was attributed to MeJA treatment which stimulated the energy status of A. bisporus by reducing the respiration rate and nutrient decomposition, thus maintaining energy production. Our results provide a new insight into the role of MeJA treatment in delaying deterioration of A. bisporus through ATP production and supply.


Assuntos
Acetatos/farmacologia , Agaricus/efeitos dos fármacos , Agaricus/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Ácido Aconítico/metabolismo , Trifosfato de Adenosina/metabolismo , Agaricus/química , Agaricus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Metabolismo Energético/efeitos dos fármacos , Fumaratos/metabolismo , Malatos/metabolismo , Metabolômica , Espectrometria de Massas em Tandem/métodos
11.
Nanomedicine ; 20: 102008, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121311

RESUMO

Advanced drug delivery systems often employ nanomaterials as carriers to deliver drugs to desirable disease sites for enhanced efficacy. However, most systems have low drug loading capacity and cause safety concerns. Therefore, many anticancer therapeutics have recently been assembled to NPs form without using any additional nanocarrier to achieve high drug loading. However, carrier-free nanomedicines are often constrained by limitations such as inadequate stability and lack of control in drug release. Therefore, we synthesize carrier-free drug NPs containing cis-aconitic anhydride-modified doxorubicin and paclitaxel (CAD-PTX) and coating with crosslinked (CL) surfactant based on hyaluronic acid (HA) segment. With this design, the pure drug NPs possess pH and redox dual responsive release characteristic and could target CD44 overexpressed cancer cells. Our studies demonstrate that these CAD-PTX-CLHA NPs display high stability, excellent active targeting effect and controllable intracellular drug release, and ultimately achieve significantly better anti-cancer efficiency than individual doxorubicin and paclitaxel.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Ácido Aconítico/análogos & derivados , Ácido Aconítico/síntese química , Ácido Aconítico/química , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Endocitose , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Oxirredução , Paclitaxel
12.
Angew Chem Int Ed Engl ; 58(14): 4632-4637, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30695128

RESUMO

In cancer treatment, the unsatisfactory solid-tumor penetration of nanomaterials limits their therapeutic efficacy. We employed an in vivo self-assembly strategy and designed polymer-peptide conjugates (PPCs) that underwent an acid-induced hydrophobicity increase with a narrow pH-response range (from 7.4 to 6.5). In situ self-assembly in the tumor microenvironment at appropriate molecular concentrations (around the IC50 values of PPCs) enabled drug delivery deeper into the tumor. A cytotoxic peptide KLAK, decorated with the pH-sensitive moiety cis-aconitic anhydride (CAA), and a cell-penetrating peptide TAT were conjugated onto poly(ß-thioester) backbones to produce PT-K-CAA, which can penetrate deeply into solid tumors owing to its small size as a single chain. During penetration in vivo, CAA responds to the weak acid, leading to the self-assembly of PPCs and the recovery of therapeutic activity. Therefore, a deep-penetration ability for enhanced cancer therapy is provided by this in vivo assembly strategy.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/farmacologia , Polímeros/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ácido Aconítico/administração & dosagem , Ácido Aconítico/análogos & derivados , Ácido Aconítico/química , Ácido Aconítico/farmacologia , Administração Intravenosa , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Tamanho da Partícula , Peptídeos/administração & dosagem , Peptídeos/química , Polímeros/administração & dosagem , Polímeros/química , Propriedades de Superfície
13.
Mater Sci Eng C Mater Biol Appl ; 91: 179-189, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033244

RESUMO

Rod-like nanomedicines facilitate cellular uptake. This research is aimed to develop fluorescence-visible rod-like nanomedicines with enhanced cellular uptake and intracellular drug controlled release based on cis-aconityl-doxorubicin (CAD) labeled cellulose nanocrystal rods (CNR). Particularly, CAD was synthesized by the ring-opening reaction between cis-aconitic anhydride (CAA) and the amino group of Doxorubicin (DOX). Amidation reaction occurred between the 6-carboxylic groups of CAD and the amino groups of aminated CNR to give CAD labeled CNR (CAD@CNR). Compared with CNR, CAD@CNR showed similar morphology and crystal structure. The mean length of CAD@CNR was ca. 118 nm with aspect ratio ranging from 12 to 15, facilitating their endocytosis. CAD@CNR prodrug was rather stable in pH 7.4 phosphate buffer solution but tended to be hydrolyzed to release DOX under acidic condition, due to the rapid degradation of amide bonds between DOX and cis-aconitic acid via an intramolecular acid-catalyzed mechanism. CAD@CNR prodrug showed sustained drug release profiles over 40 h, and the cumulative drug release showed a tendency to increase from 36 to 80% with the pH value decreasing from 7.4 to 5.0. The half maximal inhibitory concentration (IC50) of CAD@CNR prodrug against NCI H 460 cells without NH4Cl (lysosomotropic weak bases) pretreatment was 1.75 times higher than that with 40 mM NH4Cl pretreatment, further confirmed that the DOX release from the CAD@CNR prodrug was triggered by the low pH value of lysosome (pH 5.0). Compared with DOX·HCl, CAD@CNR prodrug showed enhanced cellular uptake ability during 12 or 24 h of incubation due to the endocytosis mechanism of CAD@CNR prodrug. After incubation with cells, CAD@CNR prodrug could be observed by using fluorescence microscope due to the red fluorescence of DOX. In a word, CAD@CNR showed great potential as fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug release due to its rod-like morphology, suitable aspect ratio, and acid-triggered drug release.


Assuntos
Ácido Aconítico/química , Celulose/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose , Espaço Intracelular/metabolismo , Nanopartículas/química , Pró-Fármacos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
EBioMedicine ; 26: 68-77, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29128444

RESUMO

Chronic kidney disease (CKD) is a public health problem with very high prevalence and mortality. Yet, there is a paucity of effective treatment options, partly due to insufficient knowledge of underlying pathophysiology. We combined metabolomics (GCMS) with kidney gene expression studies to identify metabolic pathways that are altered in adults with non-diabetic stage 3-4 CKD versus healthy adults. Urinary excretion rate of 27 metabolites and plasma concentration of 33 metabolites differed significantly in CKD patients versus controls (estimate range-68% to +113%). Pathway analysis revealed that the citric acid cycle was the most significantly affected, with urinary excretion of citrate, cis-aconitate, isocitrate, 2-oxoglutarate and succinate reduced by 40-68%. Reduction of the citric acid cycle metabolites in urine was replicated in an independent cohort. Expression of genes regulating aconitate, isocitrate, 2-oxoglutarate and succinate were significantly reduced in kidney biopsies. We observed increased urine citrate excretion (+74%, p=0.00009) and plasma 2-oxoglutarate concentrations (+12%, p=0.002) in CKD patients during treatment with a vitamin-D receptor agonist in a randomized trial. In conclusion, urinary excretion of citric acid cycle metabolites and renal expression of genes regulating these metabolites were reduced in non-diabetic CKD. This supports the emerging view of CKD as a state of mitochondrial dysfunction.


Assuntos
Metabolômica , Mitocôndrias/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/genética , Ácido Aconítico/metabolismo , Idoso , Biópsia , Ciclo do Ácido Cítrico/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Mitocôndrias/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Ácido Succínico/metabolismo
15.
Theranostics ; 7(13): 3260-3275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900508

RESUMO

Delivery of macromolecular drugs to the brain is impeded by the blood brain barrier. The recruitment of leukocytes to lesions in the brain, a typical feature of neuroinflammation response which occurs in cerebral ischemia, offers a unique opportunity to deliver drugs to inflammation sites in the brain. In the present study, cross-linked dendrigraft poly-L-lysine (DGL) nanoparticles containing cis-aconitic anhydride-modified catalase and modified with PGP, an endogenous tripeptide that acts as a ligand with high affinity to neutrophils, were developed to form the cl PGP-PEG-DGL/CAT-Aco system. Significant binding efficiency to neutrophils, efficient protection of catalase enzymatic activity from degradation and effective transport to receiver cells were revealed in the delivery system. Delivery of catalase to ischemic subregions and cerebral neurocytes in MCAO mice was significantly enhanced, which obviously reducing infarct volume in MCAO mice. Thus, the therapeutic outcome of cerebral ischemia was greatly improved. The underlying mechanism was found to be related to the inhibition of ROS-mediated apoptosis. Considering that neuroinflammation occurs in many neurological disorders, the strategy developed here is not only promising for treatment of cerebral ischemia but also an effective approach for various CNS diseases related to inflammation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Substâncias Macromoleculares/uso terapêutico , Nanopartículas/química , Neutrófilos/metabolismo , Ácido Aconítico/análogos & derivados , Ácido Aconítico/química , Animais , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Catalase/metabolismo , Comunicação Celular , Morte Celular , Diferenciação Celular , Dendrímeros/química , Endocitose , Exossomos/metabolismo , Células HL-60 , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanopartículas/ultraestrutura , Peptídeos/metabolismo , Polímeros/síntese química , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
16.
World J Gastroenterol ; 23(21): 3890-3899, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28638229

RESUMO

AIM: To identify demographic, clinical, metabolomic, and lifestyle related predictors of relapse in adult ulcerative colitis (UC) patients. METHODS: In this prospective pilot study, UC patients in clinical remission were recruited and followed-up at 12 mo to assess a clinical relapse, or not. At baseline information on demographic and clinical parameters was collected. Serum and urine samples were collected for analysis of metabolomic assays using a combined direct infusion/liquid chromatography tandem mass spectrometry and nuclear magnetic resolution spectroscopy. Stool samples were also collected to measure fecal calprotectin (FCP). Dietary assessment was performed using a validated self-administered food frequency questionnaire. RESULTS: Twenty patients were included (mean age: 42.7 ± 14.8 years, females: 55%). Seven patients (35%) experienced a clinical relapse during the follow-up period. While 6 patients (66.7%) with normal body weight developed a clinical relapse, 1 UC patient (9.1%) who was overweight/obese relapsed during the follow-up (P = 0.02). At baseline, poultry intake was significantly higher in patients who were still in remission during follow-up (0.9 oz vs 0.2 oz, P = 0.002). Five patients (71.4%) with FCP > 150 µg/g and 2 patients (15.4%) with normal FCP (≤ 150 µg/g) at baseline relapsed during the follow-up (P = 0.02). Interestingly, baseline urinary and serum metabolomic profiling of UC patients with or without clinical relapse within 12 mo showed a significant difference. The most important metabolites that were responsible for this discrimination were trans-aconitate, cystine and acetamide in urine, and 3-hydroxybutyrate, acetoacetate and acetone in serum. CONCLUSION: A combination of baseline dietary intake, fecal calprotectin, and metabolomic factors are associated with risk of UC clinical relapse within 12 mo.


Assuntos
Colite Ulcerativa/metabolismo , Comportamento Alimentar , Complexo Antígeno L1 Leucocitário/análise , Metabolômica , Produtos Avícolas , Ácido 3-Hidroxibutírico/sangue , Acetamidas/urina , Acetoacetatos/sangue , Acetona/sangue , Ácido Aconítico/urina , Adulto , Biomarcadores/análise , Cromatografia Líquida , Doença Crônica , Colite Ulcerativa/sangue , Colite Ulcerativa/urina , Cistinúria/urina , Inquéritos sobre Dietas , Fezes/química , Feminino , Seguimentos , Humanos , Estilo de Vida , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Recidiva , Indução de Remissão , Espectrometria de Massas em Tandem
17.
PLoS One ; 12(5): e0176363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28463998

RESUMO

Mitochondrial respiratory chain dysfunction has been identified in a number of neurodegenerative disorders. Infantile cerebellar-retinal degeneration associated with mutations in the mitochondrial aconitase 2 gene (ACO2) has been recently described as a neurodegenerative disease of autosomal recessive inheritance. To date there is no biomarker for ACO2 deficiency and diagnosis relies on genetic analysis. Here we report global metabolic profiling in eight patients with ACO2 deficiency. Using an LC-MS-based metabolomics platform we have identified several metabolites with affected plasma concentrations including the tricarboxylic acid cycle metabolites cis-aconitate, isocitrate and alpha-ketoglutarate, as well as phosphoenolpyruvate and hydroxybutyrate. Taken together we report a diagnostic metabolic fingerprint for mitochondrial aconitase 2 deficiency.


Assuntos
Aconitato Hidratase/deficiência , Aconitato Hidratase/genética , Ácido Aconítico/sangue , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Transtornos Heredodegenerativos do Sistema Nervoso/sangue , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Humanos , Hidroxibutiratos/sangue , Isocitratos/sangue , Ácidos Cetoglutáricos/sangue , Masculino , Metabolômica/métodos , Fosfoenolpiruvato/sangue
18.
Biomed Pharmacother ; 88: 374-383, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28122302

RESUMO

PURPOSE: Combination therapy is increasingly used as a primary cancer treatment regimen. In this report, we designed EGFR peptide decorated nanoparticles (NPs) to co-deliver docetaxel (DTX) and pH sensitive curcumin (CUR) prodrug for the treatment of prostate cancer. RESULTS: EGFR peptide (GE11) targeted, pH sensitive, DTX and CUR prodrug NPs (GE11-DTX-CUR NPs) had an average diameter of 167nm and a zeta potential of -37.5mV. The particle size of the NPs was adequately maintained in serum and a sustained drug release pattern was observed. Improved inhibition of cancer cell and tumor tissue growth was shown in the GE11-DTX-CUR NPs group compared to the other groups. CONCLUSION: It can be summarized that DTX and CUR prodrug could be delivered into tumor cells simultaneously by the GE 11 targeting and the EPR effect of NPs. The resulting GE11-DTX-CUR NPs is a promising system for the synergistic antitumor treatment of prostate cancer.


Assuntos
Antineoplásicos/uso terapêutico , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Taxoides/uso terapêutico , Ácido Aconítico/análogos & derivados , Ácido Aconítico/química , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cumarínicos/química , Curcumina/química , Curcumina/farmacologia , Docetaxel , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ácido Láctico/química , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Peptídeos/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias da Próstata/patologia , Espectroscopia de Prótons por Ressonância Magnética , Taxoides/química , Taxoides/farmacologia , Tiazóis/química
19.
Int J Biol Macromol ; 92: 795-802, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27481344

RESUMO

Camptothecin (CPT) was introduced to water-soluble chitosan oligosaccharide (CHO) using cis-aconityl (CA), as a pH-sensitive linker, to develop a new hydrophobic structure, i.e. CPTCACHO. The triple conjugates were synthesized in three ratios (5%, 7.5%, and 10%) and characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1HNMR). Thermo gravimetric analysis and critical micelle concentration (CMC) assessments were performed. Prepared nano-micelles were analyzed for particle size, polydispersity index (PDI), drug release and in vitro cytotoxicity. CPTCACHO 7.5% micelles as optimum micelles had a mean diameter of 50nm (observed by transmission electron microscopy), a zeta potential of +45.9mV, and a CMC of about 9.97×10-5g/L. The release results showed that CPTCACHO 7.5% has the burst release at acidic pH, and cytotoxicity study indicated that IC50 of CPTCACHO 7.5% for MCF-7 cell line was 0.8µg/mL. These properties altogether make CPTCACHO micelles, as a pH sensitive cargo with inherent cytotoxicity, a potential candidate for hydrophobic anticancer drugs.


Assuntos
Ácido Aconítico/química , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Quitosana/química , Portadores de Fármacos , Antineoplásicos Fitogênicos/química , Camptotecina/química , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Cinética , Células MCF-7 , Micelas , Tamanho da Partícula
20.
J Control Release ; 234: 10-20, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27164545

RESUMO

The objective of this study was to develop an active-targeted, pH-responsive albumin-photosensitizer-incorporated graphene oxide nanocomplex as an image-guided theranostic agent for dual therapies. Herein, bovine serum albumin (BSA)-cis-aconityl pheophorbide-a (c-PheoA) conjugate was complexed with graphene oxide (GO) at ratios of 1:1, 1:0.5, and 1:0.1 with the mean hydrodynamic diameter of the resulting complex being 100-200nm. Further, with the 1:0.5 ratio, we developed a folate-BSA-c-PheoA conjugate:GO complex incorporated free PheoA (PheoA+GO:FA-BSA-c-PheoA NC) with a mean hydrodynamic diameter of 182.0±33.2nm. The release study showed that the photosensitizer from the nanocomplex was released rapidly at pH5.5 compared to that at pH7.4 when incubated for 24h. Cellular uptake results showed that the PheoA+GO:FA-BSA-c-PheoA NCs was readily taken up by B16F10 and MCF7 cancer cells. In vitro phototoxicity results showed that PheoA+GO:FA-BSA-c-PheoA NC has a higher efficacy against cancer cells than free PheoA, thereby demonstrating the synergistic effect of PS and GO in response to a single laser of 670nm. In vivo and ex vivo bioimaging results showed that fluorescence signals of higher intensity were observed in the tumor area of mice treated with PheoA+GO:FA-BSA-c-PheoA NC than those in the tumor of mice treated with free PheoA, thereby suggesting that the targeted nanocomplex selectively accumulated in the tumor area compared to free PheoA. Through antitumor study, PheoA+GO:FA-BSA-c-PheoA NC showed a synergistic effect in tumor-bearing mice by a single 671nm laser treatment. These results demonstrate that our prepared PheoA+GO:FA-BSA-c-PheoA NC can be used as a theranostic agent in phototherapies and for the photodiagnosis of cancer.


Assuntos
Clorofila/análogos & derivados , Ácido Fólico/química , Grafite/química , Nanoconjugados/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Soroalbumina Bovina/química , Ácido Aconítico/análogos & derivados , Ácido Aconítico/química , Animais , Clorofila/química , Clorofila/farmacocinética , Clorofila/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Lasers , Células MCF-7 , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/terapia , Camundongos , Camundongos Nus , Microscopia Confocal , Óxidos , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA